Int. J. Solids Structures, 1974, Vol. 10, pp. 1431-1443. Pergamon Press. Printed in Gt. Britain.
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Abstract—This paper is concerned with the problem of designing ellipsoidal domes so that
they are in a membrane state of stress. The investigation is based on a method proposed by
Vekua, in which an adjustment of the gravity of the shell is used to ensure a membrane state.
The theory is specialized to ellipsoidal shells and some numerical results of the gravity distribu-
tion (i.e. thickness of the shell), and the corresponding stresses and linear elastic displacements
are presented.

However, it should be noted that the solutions obtained in this way are not unique.
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NOMENCLATURE

metric tensor of the middle surface and its determinant

curvature tensor of the middle surface

Cartesian coordinates of the middle surface

the thickness of the shell

external loadings in surface coordinates

polar coordinates, defined through equation (2.9)

arclength along the boundary

bending displacement field in surface coordinates

complex functions, defined by equations (1.13, 1.18 and 1.21), respectively
conjugate isometric surface coordinate system

complex parameter, defined by equation (1.13)

transformation constants, which relate any ellipsoidal shell to a sphere
stress and displacement functions, defined by equations (1.18) and (1.20), respectively
prescribed external loadings in Cartesian coordinates

total external loadings in Cartesian coordinates

Gaussian curvature of the middle surface

the symmetric membrane stress tensor

the principal stresses

constant, defined through equation (2.8)

radius of the reference sphere

Fourier functions, defined through equations (2.14, 2.16 and 2.18), respectively
complex functions, defined through equation (2.13)

the boundary forces in Cartesian coordinates

bending displacement field in Cartesian coordinates

transformation function, defined by equation (2.1)

displacement field, derived from Hooke’s law

normal to the middle surface

vector function, defined by equation (2.6)

a system of orthonormal displacement fields, in Cartesian coordinates
specific weight of the material of the shell

denotes complex conjugation

denotes quantities related to the reference sphere

denotes partial differentiation with respect to z.

1431



1432 JORGEN JUNCHER JENSEN

INTRODUCTION

In this paper a method developed by Vekua[l] is used to realize the membrane state of
stress in domes of ellipsoidal shape. The general idea is that with an appropriate choice of
the thickness variation across the shell, the gravity forces, together with the other prescribed
loadings, should ensure the membrane state.

In many shell constructions the membrane state of stress is considered to be an optimal
solution in the sense that the stresses are uniform through the thickness of the shell.

Two main approaches have been used previously to attain a membrane state in shells.
The first method is based on the solution of the equilibrium equations together with the
compatibility equations and a constitutive law. As this set of equations is hard to solve in
general, all works so far have been limited to axisymmetric shells. In a recent paper by
Nemirovskii and Starostin[2], the membrane state of stress for this class of shells is reached
by varying one or more of the parameters: meridian shape of the middle surface, external
loadings, thickness function and distribution of reinforcement. In the absence of surface
forces a very clear formulation of this method is given in an early paper by Horne[3].

The second method makes use of the fact that a membrane shell is a statically determinate
structure, provided the boundary conditions are suitably defined. Therefore, the equilibrium
equations can be solved for the stresses without any assumptions on the stress-strain
relations. The solution of the equilibrium equations can be formulated in several ways, all of
which take into account the gravity of the shell. The usual procedure is to take the middle
surface, thickness and *“ half ” of the boundary tractions as prescribed and then solve for the
stresses, which ultimately gives the rest of the tractions. Another way is to prescribe a
stress distribution and then solve for the thickness and the middle surface (e.g. domes of
uniform strength). Both these formulations have been thoroughly treated in earlier papers
[4, 7]. In the method proposed by Vekua[l], tractions are prescribed completely on the
boundary. Furthermore, if the middle surface and the surface forces, except the gravity
forces, are taken as given, the equilibrium equations can be solved for the stresses and the
thickness distribution. The thickness is determined in such a way that a stress distribution
can be found which satisfies the prescribed tractions. It should be emphasized, however,
that with this method, the solution is not unique. The last-mentioned method, which does
not seem to have been used previously, turns out to be a very useful method in the design of
ellipsoidal domes loaded by a single load system, such as e.g. snow, hydrostatic pressure
and/or concentrated forces. However, as the geometry of the dome normally would vary
with the type or direction of the applied loads, it would in general not be possible to find a
bending-free design in the case of a multiple load system, such as, for example, wind
blowing from different directions.

MEMBRANE THEORY

This section is devoted to a short outline of parts of the membrane theory of shells derived
by Vekuall].

The Vekua theorem
In the membrane state of stress the equilibrium equations for a thin shell read

D,N* + FF =0

d,

1.1
aﬂNaﬂ‘*'p:O ( )
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where N*/ is the symmetric stress tensor and d,g is the symmetric tensor of curvature. F* and
p are related to the cartesian components F; of the surface loading through

Fi=fi F* + pX' (1.2)

where comma means partial differentiation. Furthermore, D, denotes covariant differentia-
tion, /7, are the base vectors of the surface coordinate system and X* is the normal to the
surface. Here and in the following, the summation convention is adopted.

Now, let U’ denote an arbitrary bending displacement field

(L.3)
D,y + Dyuy) — dygttg =0
and let T¢ be the boundary forces, satisfying
T'X'=0 (1.4)
along the boundary L.
The Vekua theorem[1] then states that
[[Fivtds+ [ T'T'ds =0 (1.5)
s L

is a necessary and sufficient condition for the existence of a membrane state of stress in a
shell with positive Gaussian curvature throughout. Gol’'Denveizer and Zveriaev[5] have
shown that this theorem can be extended to shells with zero Gaussian curvature, provided
that the boundaries are not along the lines with infinite radius of curvature.

Determination of thickness distribution

From the complete solution Ufj) of equation (1.3) we construct a set of orthonormal
functions i;, in the sense that (J;, being Kronecker’s symbol)

| fsl//?j) Vi dS = 6. (1.6)
This can be achieved by the Gram-Schmidt orthogonalization procedure, which yields
. I k| .
Vi = Cj:UEj) - ;Ijn '%.):, Jj=12,3,... (1.7)
where

Ijn= HSU(Z}) Vi dS

_ j=1 2 -1/2
¢;= J.J. Uy — LVl dS; .
S n=1

The surface loadings are separated into

Fi=Fi— yhoi (1.8)
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where F' are the prescribed surface forces, /4 the thickness of the shell, and y the weight per
unit volume. Using equations (1.6) and (1.8), equation (1.5) yields

vh = .Zlki Ui + ¥ (1.9)
i=
where
k=] LF*\p;‘j) ds + fLT"n//;' 5 ds
and where Y is any function that satisfies

[[wwdyds =0  j=1,2.3.... (1.10)
S

As the introduction of gravity forces does not alter the horizontal force balance and the
moment equilibrium about a vertical axis, the necessary conditions for achieving a mem-
brane state by an adjustment of the gravity forces are

HSF“ ds+fLT“ds=0 x=1,2

(1.11)
ﬂﬁae,,,fﬂds+fT“e,,,f”ds=o % f=12
S L

together with equation (1.4) and a solution y/ that is positive everywhere. e, is the alternating
symbol. Vekua[1] has also shown that these rigid body equilibrium equations are sufficient
conditions.

As shown by Vekua[l] the equations (1.3) can be rewritten in a more convenient form
by introducing a conjugate isometric surface coordinate system (x', x?) in whicht

dyg =/ Ka 3, (1.12)

where K is the Gaussian curvature and a is the determinant of the metric tensor. By intro-
ducing the complex functions

z=x' +ix?

w=a 2K Y + iu,) (L.13)
where i is the imaginary unit, it can be shown that
Uy = Re{—2K ™ "*w; X!, + K™'a~"*(a'?K3"*w)), X"} (1.14)
where w; is the jth solution of{
0,,w+ Bw,=0. (1.15)
The derivatives are defined by
5:5(),z=%(b%—i(%) (1.16)

t X! is then directed to the convex side.
1 A subscript ¢ means complex conjugation of a function.
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and furthermore

AN BN P AN R R AR TSR

{ ﬁa y} being the Christoffel symbols. In deriving equation (1.14) we have made use of

Godazzi’s equations and the well known identity

alog(ﬁ)={ "y

ox*

The determination of Uj;, is now reduced to the solution of equation (1.15). This equation
belongs to the class of generalized Cauchy—Riemann equations, which have been thoroughly
treated by Vekua[l].

With a transformation like that used to solve equation (1.3), equations (1.1) can be
written as

NNz W P
akK'/* 2\/aK (1.17)
NU N2 o 2
\/aK
where w* is the unique solution of
0, w* — B.w} = F*
F* _lal/2K1/4{K1/2 ( ) \/a (F' — le)j (1.18)
with the boundary condition
20 1
wh= — 2 Tix p\/‘” on L (1.19)

ZrKl/4 »Z 2 K1/4

where prime denotes differentiation with respect to the arc length on the boundary. By a
similar transformation, the linear stress-strain relations can be written as

0, W** + Bw** = F**

IL+v _ ~ . v . .
F**:ZE—E—(I 1/21( 1/4{]\’11—N22+21N12——ﬂ——v(a11—022+21a12)Na}

(1.20)

where E is Young’s modulus and v Poisson’s ratio. The displacements V' are then given by

Wk = q 12K YAy 4+ ip,)

vo = K™ ta V2Re{(a' K3/ *w**) } — L a V2K T2E,
(1.21)

1
Err = E {(1 + v)Nrr - varer}

Vi=fio*+ X',
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ELLIPSOIDAL SHELLS

The solutions of the generalized Cauchy—Riemann equations (1.15, 1.18 and 1.20) are
especially simple when B = 0. Vekua[l, 6] has shown that this is the case if and only if the
middle surface of the shell is of second order (i.e. an ellipsoidal shell). Taking a sphere
(f) as reference we can obtain any ellipsoidal dome (f*) by the projective transformationt

A 42 4

A4 4y 43 43
AY AT A3 C

By a suitable choice of the radius R, of the reference sphere, the determinant D can be
taken to unity without losing generality, and then (see Ref. [6])

1 a2
K= 78 a—; K, 2.2)
where subscript s refers to quantities related to the sphere. Furthermore, the conjugate iso-
metric coordinate system is invariant with respect to the transformation (2.1) and for the

sphere we find in this system

; R
i 2 1’ 2’ 1 —
fe T zzc( x', 2x zz,)
16R
- 2.3
% 1+ zz)* 23
X;=—fJIR,
K, =R;%
As basic solutions w; to equation (1.15) we choose
{Z(j+1)/2 j:1,3, 5, ... (24)
I i i=2,4,6,... ‘

and using equations {2.2-2.4), equation (1.14) yields

Uy — iUy = ’“;zu“)/lffz+%;z(j“”/2 (]—;j 1 +2zzc) Xt j=1,35.. (2.5
where
Xi=yp3 \/5- X (2.6)
From equation (2.1) we obtain
.= % Pifds Q.7

+ Actually we do not need V, but this function may be useful in the numerical computations.
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where
, 1 . . , ,
P = (45 €, — A, C)f} + (i — A'C)).

This yields
X' = elmkprznpl:z VXi

and similar formulae for the two other components of X °. e imi 18 the 3 x 3 x 3 alternating
symbol. U{;, are thereby expressed in terms of quantities belonging to the sphere and the
transformation constants.

In the following we consider ellipsoidal domes without holes, i.e. the surface S of the
dome is the part of the ellipsoidal shell lying above the plane f* = 0. From equations (2.1)
and (2.3) we find that S is mapped into

{(x1 —x5)? 4+ (x* = x3)> <R* when A3— A%R >0 2.8)
(! = xD?+ (x* —x2)* > R* when 43— A3R,<0 '
assuming that V is positive everywhere in the domain. The constants are
A4
Xo = m , A= 1, 2
g2 D2+ (4D + (4D)® — (4YR)?
(43 — 4°/R,)?
As the domain S is circular we introduce polar coordinates
x' =x} +rcosb
5 ) ) 0<r<R; 0<0<2n 2.9
x“=x5+rsinf
The differential surface element
dS =a'/? dx' dx* = a'/*r dr d0 (2.10)

where the determinant of the metric tensor a can be determined from equations (2.6) and
(2.3). The differential line element on the boundary

ds = R(a; sin*0 + a,, cos*d — 2a,, sin 8 cos §)'/2 d 2.11)

where a,; is the metric tensor evaluated on the boundary. This tensor is calculated from
equation (2.7). With prescribed external loadings F’, T' and prescribed geometry (i.e.
A%, 4%, C;, Cand R,), the procedure outlined in the previous chapter yields one value of the
function 4 which ensures a membrane state of stress in the dome. In the infinite summation
in equation (1.9) we take as many terms as necessary to obtain a reasonable accuracy.

Bearing in mind the definition (1.16) for the derivatives with respect to z and the relation
(2.9), we can rewrite equation (1.18) as

ow* i Ow*

S - % - i@
a +r 30 2F*(r, B)e™ . (2.12)

In order to avoid numerical differentiations of F*, it is expedient to separate this into

F*r,0)=T(r, 0) + S ,(r, 9) 2.13)
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where, from equations (1.2, 1.18 and 2.3),

0 2@ s Zo oo
T(r,0)= R (Figi. c _Fig
r, 9) V("+1+zzct)
at’? _ .
S(r,0) =% RY? — FiX"
V
The solution w* is obtained by substitution of
wH(r,0) = Y R,(r)e" (2.19)
into equation (2.12). Using the orthogonality properties of ¢ we find
, n L{, n+2
R(0) =2 R() = 2101+ 5 (812000 + 22 5,000)| @.15)

where prime denotes differentiation with respect to r and where

2n
T(r) = jo T(r, §)e™ " do

(2.16)
2n .
S.r) = [ S(r, 6)e™ " do.
o
Multiplying equation (2.15) by r ™" and integrating, we end up with
" n+1 r\"
2 (1@ + 2 5,000) (5) 4t n<0
0 ¢ ¢
R.(r) = S,,(r) + . | (2.17)
)" n+ )(r)" ]
=) -2 —_— - >0
ot (7) =2f (@ + = 5,000) (5) i 02
where
2n .
wh = f wH(R, 0)e ™" 40
0 (2.18)
* 2i Tiyi
Wl(R, 9) = —m TXZ

as the second term on the right-hand side of the boundary condition (1.19) has been included
elsewhere in equation (2.17). The solution w*(r, 8) is thereby determined and from equation
(1.17) we easily find the stress tensor N**. Then the principal stresses N,, N, are calculated
from the formula

N,

| = IV N)? — N (2.19)

where

N= N11N22 _ (NIZ)Z'
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As seen from equations (1.20-1.21), the associated linear elastic displacements are deter-
mined in the same way as the stresses. As boundary condition we must choose prescribed
inplane displacements, whereby we get a known value of w** on the boundary.

NUMERICAL RESULTS

The method has been applied to a number of ellipsoidal domes with various types of
surface loads and boundary tractions.

In the case of axisymmetric domes exposed to gravity forces only, the thickness was
found to be constant throughout the shell. As a test, the calculated stresses were compared
with the exact expressions given by Novozhilov[4], and full agreement was found.

In Figs. 1-4, the thickness, stress and displacement distributions are shown for an ellip-
soidal dome with three different semiaxes, one of which is in the vertical direction. In these
examples the boundary traction

T = -i 3.D

n' is the unit normal to the boundary, directed outwards. Furthermore, the surface loads are
taken to be the gravity forces and a hydrostatic pressure p

Fi= —pX'— yhéi 3.2)
where p takes the values
p=-10,1. (3.3)

A positive sign on p means internal pressure. In Figs. 1, 3 and 4 the results for the reference
sphere are also shown.

Figure 1 shows the variation of yh along the two vertical planes of symmetry and Fig. 2
shows the ground-surface in both the undeformed and the deformed state (with v = 0-3). It
will be seen that the thickness variation changes when a hydrostatic pressure is present and
also that the position of the minimum thickness depends on the direction of the pressure.
In Figs. 3 and 4 the associated principal stresses

0y 0'2) (Nl Nz)
s — = _—-, h— 3.4
(y ¥ vh yh G4
are shown.

Otbher ellipsoidal domes with three different semiaxes show, in principle, the same charac-
teristic as that above. However, when none of the semiaxes is vertical, the traction T* should
be prescribed otherwise than by equation (3.1) to ensure the force equilibrium (1.11). As an
example the cross-section in the plane of symmetry is shown in Fig. 5. The boundary force
is taken to

T'=—-n'+gsin®-# (3.5

where © is the horizontal angle from the plane of symmetry # is a unit tangential vector to
the boundary, and where the constant ¢ takes a value that ensures the force balance {1.11).
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THICKNESS=SPEC. WEIGHT

2.0 2.0
2
3
1

1.0 1.0

p=l
0.0 0.0
ToP GROUNDSURFACE

THICKNESS=SPEC, WEIGHT

2.07 2.0
1.0 1.0
£=0
0.0 0.0
ToP GROUNDSURFACE

THICKNESS=SPEC. WEIGHT

2.07 2.0
1.0 1.0
==
0.0 L2 0.0
ToP GROUNDSURFACE

Fig. 1. Calculated thickness variation for three different values of the pressure p. Semiaxes
(1-1, 0-90909, 1-0). 1 and 2: variation through the planes of symmetry. 3: variation through
the reference sphere.
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Fig. 2. Corresponding cross-sections of the shells at £ = 0. Solid lines: underformed state,
dashed lines: deformed states.

1.PRINCIPAL STRESS/WEIGHT 1.PRINCIPAL STRESS/WEIGHT
2.0y 12.0 2.0, 1 2.0
1.0
0.0
-1.0 + -1.0 -1.04 -1.0
-2.0 i -2.0 -2.0 p=0 -2.0

ToP GROUNDSURFACE ToP GROUNDSURFACE
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1.PRINCIPAL STRESS/WEIGHT

2.0,

1.0

0.0

-1.01

p=-|

-2.0
ToP

Fig. 3. Corresponding hoop stresses divided by the specific weight.

2.PRINCIPAL STRESS/WEIGHT

0.0 0.0
3 2
-1.0 1 -1.0
-2.0 -2.0
-3.0 -3.0
p=0
-4.0 -4.0

ToP GROUNDSURFACE

0.0

-1.0

-4.0

2.0
1.0
+ 0.0
32
-1.0
-2.0
GROUNDSURFACE

2.PRINCIPAL STRESS/WEIGHT

3

2

710.0

-1.0

ToP

-4.0
GROUNDSURFACE
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2.PRINCIPAL STRESS/WEIGHT
0.0 v+ 0.0

-1.0

-4.0
TOP GROUNDSURFACE

Fig. 4. Corresponding meridional stresses divided by the specific weight.

Fig. 5. An oblique dome.
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A6cTpakT — Pafora kacaercs 3afavd pacyeTa 3JLTHIICOMIAJIBHBIX KYHOJIOB B MEMOpaHHOM
cocrosHHN. VccnenoBanre ocHOBAHO Ha MeToae Bekya, B KOTOpOM HCIONMB3YETCS PETyIAPO-
BaHME CHJIbI TSDKECTH, B LIEJLIO FAPAHTHPOBKH MEMOpPAaHHOro cocTosHHA. Teopus OrpaHHYH-
BaeTCA K JUIMIICOHAABHBIM 00004kaM. [aroTcs HEKOTOphble YUCJCHHBIE PEe3YJIbTATHI OIS
pacnpeeNieHHst CHJIbL TSHKECTH (T. €. TOJIUMHBI 0G0JI0UKH) M COOTBETCTBYIOLINE HATIPSIKEHHS
¥ NIHHEHHBIE YIIPYTHE TIEPEMELLIEHHS.

Hano onHako 3aMeTHTh, YTO MOJMYHYEHHBIE 3THM CIIOCOOOM DELIEHHUS HE €HHCTBEHBL.



